Theoretical Analysis for a Class of Rheonomous Affine Constraints on Configuration Manifolds—Part I: Fundamental Properties and Integrability/Nonintegrability Conditions

نویسندگان

  • Tatsuya Kai
  • Wei-Chiang Hong
چکیده

We analyze a class of rheonomous affine constraints defined on configuration manifolds from the viewpoint of integrability/nonintegrability. First, we give the definition of A-rheonomous affine constraints and introduce, geometric representation their. Some fundamental properties of the Arheonomous affine constrains are also derived. We next define the rheonomous bracket and derive some necessary and sufficient conditions on the respective three cases: complete integrability, partial integrability, and complete nonintegrability for the A-rheonomous affine constrains. Then, we apply the integrability/nonintegrability conditions to some physical examples in order to confirm the effectiveness of our new results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical Analysis for a Class of Rheonomous Affine Constraints on Configuration Manifolds—Part II: Foliation Structures and Integrating Algorithms

This paper investigates foliation structures of configuration manifolds and develops integrating algorithms for a class of constraints that contain the time variable, called A-rheonomous affine constrains. We first present some preliminaries on the A-rheonomous affine constrains. Next, theoretical analysis on foliation structures of configuration manifolds is done for the respective three cases...

متن کامل

Partial Integrability Conditions and an Integrating Algorithm for Fully Rheonomous Affine Constraints

In this paper, integrability conditions and an integrating algorithm of fully rheonomous affine constraints (FRACs) for the partially integrable case are studied. First, some preliminaries on the FRACs are illustrated. Next, necessary and sufficient conditions on the partially integrable case for the FRACs are derived. Then, an integrating algorithm to calculate independent first integrals of t...

متن کامل

An Integrating Algorithm and Theoretical Analysis for Fully Rheonomous Affine Constraints: Completely Integrable Case

This paper develops an integrating algorithm for fully rheonomous affine constraints and gives theoretical analysis of the algorithm for the completely integrable case. First, some preliminaries on the fully rheonomous affine constraints are shown. Next, an integrating algorithm that calculates independent first integrals is derived. In addition, the existence of an inverse function utilized in...

متن کامل

Relationships between Darboux Integrability and Limit Cycles for a Class of Able Equations

We consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmPxyPxyPxy++++2(,)(,)(,)nnmnmyQxyQxyQxy++&=++. For where and are homogeneous polynomials of degree i. Inside this class of polynomial differential equation we consider a subclass of Darboux integrable systems. Moreover, under additional conditions we proved such Darboux integrable systems can have at most 1 limit cycle.

متن کامل

A conceptual framework chemistry of Hydrated Cations: Part I. Preliminary Ab Initio and QTAIM calculations on [Li(H20)nr (n=1,2,3).

Ion molecules with general chemical formula as [Li(H2O)] (n=1,2,3), have been chosen as model species toinvestigate the chemical properties of hydrated lithium cations. The RHF(SCVS)/UGBS level of calculationhas been used for obtaining equilibrium geometries and Rho(r) functions (electron density distributions). By theaid of fundamental physical theorems implemented in Quantum Theory of Atoms i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014